QR and LQ Decomposition Matrix Backpropagation Algorithms for Square, Wide, and Deep - Real or Complex - Matrices and Their Software Implementation

8th International Conference on Algorithmic Differentiation, CHICAGO, ILLINOIS [Lucas Roberts](mailto:rlucas7@vt.edu) & Denisa Olteanu Roberts

UNIVERSITY OF UIC **ILLINOIS CHICAGO**

- Matrix Background
- Algorithmic Differentiation Background
- Paper Contributions
- Future Ideas

Matrix Background

An {over,re}view of some Matrix Analysis material.

- Linear Independence (LIN) ($x_0, ..., x_{n-1}$): are said to be LIN iff $\sum_{i=0}^{n-1} a_i x_i = 0$ with not all $a_i = 0$.
- Rank of a matrix: The largest number columns that constitute a LIN set of columns of the matrix.
- Partitioning: A matrix may be partitioned into sub-matrices $A = [X|Y]$. Here the $\#\{\text{rows of } X\} + \#\{\text{rows of } Y\} = \#\{\text{rows of } A\}$ and *mutatis mutandis* for columns.

- Householder Reflection: Let $v \in \mathbb{R}^n$ be a non-zero vector. A Householder vector of *v* is of the form $\boldsymbol{P} = \boldsymbol{I} - 2 \frac{v v^T}{v^T v}$ $\frac{VV}{V^T V}$.
- Householder Matrix: *Q* = ∏*ⁿ−*¹ *ⁱ*=0 *Qⁱ* , a product of *n* distinct Householder vectors.
- OR Factorization: $A_{n \times m} = O_{n \times m} R_{m \times m}$ where $n \geq m$.

- Given a vector *x* we want to find a reflection that transforms *x* into a direction parallel to some unit vector *y*.
- To achieve this we do $u = x ||x||y$ and $v = u/||u||$.
- Then calculate $I 2vv^T = ||x||v$.
- Now by choosing $y = e_1$, the Euclidean basis vector with first element 1, we recurse on corresponding vectors to arrive at an upper diagonal matrix *R*.
- *Q* is the product of the Householder reflection matrices and $A = QR$.

- Start with the first column of *A* and zero out all entries beneath the main diagonal entry.
- Then recurse onto the $(n-1) \times (m-1)$ sub-matrix. Repeat until empty matrix.
- This gives you $Q^T A = R$.

- $A = QR$.
- \bullet $QQ^T = I_{n \times n}$ and $Q^TQ = I_{m \times m}$.
- $span(A) = span(Q)$.

Span is the collection of all vectors which can be represented as linear combinations of the basis from the vector space.

Algorithmic Differentiation Background

An {over,re}view of some Algorithmic Differentiation material.

- Reverse mode will be the primary focus of the talk.
- In algo-diff, represent a function as a Directed Acyclic Graph (DAG).
- Then topologically sort the graph-if necessary.
- Then generate intermediate node values on the forward pass.
- In the reverse pass generate the gradient values.

- In many examples, the node values are expressed as scalars. However, the same approach applies if the node values are matrices.
- As we'll see, the equations become more difficult to derive. However, the closed form solutions enable speedups.
- A motivating idea for matrix algorithmic differentiation is to use the BLAS routines directly when possible, see Seeger et al. also Giles paper.

Paper Contributions

E.g. What is new and worth noting and citing.

• For $A \in \mathbb{R}^{r \times c}$ let $A = QR$ then, $\bar{A} = (\bar{\bm{Q}} + \bm{Q}$ copyl $tu(\bm{M}))$ \bm{R}^{-T} with $\bm{M} = \bm{R}\bar{\bm{R}}^T - \bar{\bm{Q}}^T\bm{Q}$, (eqn 3.3) $\bm{\cdot} \bar{\bm{A}} = \bm{Q}\left[\bar{\bm{R}} + \bm{P}_L \circ \left(\bm{R}\bar{\bm{R}}^T - \bar{\bm{R}}\bm{R}^T + \bm{Q}^T\bar{\bm{Q}} - \bar{\bm{Q}}^T\bm{Q}\right)\bm{R}^{-T}\right] + \left(\bar{\bm{Q}} - \bm{Q}\bm{Q}^T\bar{\bm{Q}}\right)\bm{R}^{-T}$ (eqn 3.8) (prior work from S. Walther)

P^L is a strictly lower tridiagonal matrix with all ones beneath the diagonal and zeroes along and above the main diagonal

• We will refer to these two equations throughout the remainder of the talk and argue that they are equivalent-or can be made so-and that (3.3) is preferred to (3.8).

- Let $\bar{\bm{Q}}_p = \bar{\bm{Q}} + \bm{Y} \bar{\bm{V}}^T$.
- \bullet For $A \in \mathbb{R}^{r \times c}$ let $A = QR$ then $A = [X|Y] = QR = Q[U|V].$
- $\bm{\Phi} \cdot \bar{\bm{A}} = [(\bar{\bm{Q}}_p + \bm{Q}$ c*opyltu* $(\bm{M})) \ \bm{U}^{-T} | \bar{\bm{Y}}]$ *,* (eqn 3.3).
- $\boldsymbol{\cdot} \hspace{0.2cm} \bar{A} = \left[\boldsymbol{Q}\left(\bar{\boldsymbol{Q}}_{p} + \boldsymbol{P}_{L} \circ \left(\boldsymbol{U}\bar{\boldsymbol{U}}^{T} \bar{\boldsymbol{U}}\boldsymbol{U}^{T} + \boldsymbol{Q}^{T}\bar{\boldsymbol{Q}}_{p} \bar{\boldsymbol{Q}}_{p}^{T}\boldsymbol{Q} \right)\boldsymbol{U}^{-T} \right] + \left(\bar{\boldsymbol{Q}}_{p} \boldsymbol{Q}\boldsymbol{Q}^{T}\bar{\boldsymbol{Q}}_{p} \right)\boldsymbol{U}^{-T}|\bar{\boldsymbol{Y}}].$
- In both equations $\bar{Y} = \mathbf{0}\bar{V}$.
- If *X* is not full rank use an rank revealing QR and permute the columns to get the columns first, $AP_\pi = QR$. For P_π the permutation matrix.
- *Define the matrix product of *Y* or \overline{Y} to generate a 0 when *Y*, *V* are empty then these equations give the non-wide equations as a special case.

- Proof of Equivalence of Eqn 3.3 vs Eqn 3.8. for $\mathbb R$ and $\mathbb C$ fields.
- Full proofs of QR derivative formulae from first principles for wide case (rows \lt columns), for both $\mathbb R$ and $\mathbb C$.
- Correction term for $\mathbb C$ field when using Eqn 3.8.
- Implementations in wide case for major open source deep learning frameworks (PyTorch & Tensorflow), for both $\mathbb R$ and $\mathbb C$.
- Also tall/deep case of LQ decomposition, analogous to transpose, of QR.

For completeness, also include derivations of gradients for the tall/deep and the square QR cases for \mathbb{R} .

- $C = f(A, B)$ where f is some function with matrix argument(s), for us f is a QR factorization.
- Express loss: $d\mathcal{L} = \text{tr}(\bar{\mathbf{C}}^T d\mathbf{C}) = \text{tr}(\bar{\mathbf{C}}^T \frac{\partial f}{\partial A} dA) + \text{tr}(\bar{\mathbf{C}}^T \frac{\partial f}{\partial B} d\mathbf{B}).$
- \cdot Then, identify $\bar{A} = \frac{\partial f}{\partial A}$ *∂A* ${}^{T}\bar{\boldsymbol{\mathcal{C}}}$ and $\bar{\boldsymbol{B}} = \frac{\partial f}{\partial \boldsymbol{F}}$ *∂B* $^{\mathit{T}}\bar{\mathbf{\mathit{C}}}$, as the variations/gradients sought.
- (Wide case) Partition the input matrix $A = [X|Y]$ with X square and Y tall/deep.
- Assume *X* is full column rank, then *Y* can be expressed as a linear combination of *X*.
- Analogous partition of *R* as $R = [U|V]$.

- We define a new gradient matrix $\bar{\boldsymbol{Q}}_p$, denoted $\bar{\boldsymbol{Q}}_{prime}$ in our paper.
- In deep/square cases this corresponds to the original $\bar{\boldsymbol{Q}}$ (e.g. a special case).
- Allows use of Equation (3.8) if desired for wide *A* matrices by replacing all instances of $\bar{\boldsymbol{Q}}$ with $\bar{\boldsymbol{Q}}_p$ in gradient.
- However, we prefer equation 3.3.

- We call the matrix defect the value by which we multiply rows to get columns.
- For example, with a defect of 2, we have 4 rows, 8 columns.
- A square matrix has defect 1.
- All matrix entries are Gaussian mean 0, variance 1.

- The simulated values indicate some form of expected behavior. What if naturally occuring matrices are not what we expect?
- Let's look at a few matrix market examples-Harwell Boeing economic matrices.
- In all 3 cases the use of equation 3.3 has a better runtime.

[From The Harwell-Boeing Economic Models](https://math.nist.gov/pub/MatrixMarket2/Harwell-Boeing/econiea/)

- Prefer Equation 3.3, why? The evidence:
- The TLDR (too long, didn't read) here is that using equation 3.3 is faster on average than equation 3.8.
- For larger defects, the difference decreases. This is because the proportion of the total computation being done is by the calculation required for the additional (*columns − rows*) columns, e.g. the wide/defect part. Even here Equation 3.3 is modestly faster.
- Using Equation 3.3 obviates using a special branch for $\mathbb C$ fields, simpler code and easier to maintain and also faster.

- The reason falls out naturally from the proof in the wide case.
- $\bm{\cdot}$ For the proof to work for $\mathbb C$ we need $\bm P_L \circ \big(\bm M \bm M^\dagger\big) + \bm M^\dagger$ to equal symh $(\bm M \circ \bm E)$ where *E* is a matrix of 1s along the main diagonal, 0s above and 2s beneath. For complex, wide matrices these two are not equal.
- We derive a correction term to make them equal, $C = i\Im(\text{diag}(M))$, where $i =$ *√ −*1.
- Use the correction term if you want to use Equation 3.8 with complex valued matrices.

Some Future Research Areas

Get in touch if interested

- I plan to implement the wide case in JAX if the maintainers will accept a PR. I've initiated discussion on a github issue. If you are someone who maintains or contributes to JAX-or who knows the codebase well-please let's talk during the conference.
- Julia? I'm not a Julia developer. If a Julia developer wants to contribute this-and they do not already support I'm happy to work with you to help ensure the code is correctly implemented.

- [Algorithmic Differentiation of Linear Algebra Functions with Application in](https://www.researchgate.net/profile/Sebastian-Walter-6/publication/45894522_Algorithmic_Differentiation_of_Linear_Algebra_Functions_with_Application_in_Optimum_Experimental_Design_Extended_Version/links/54f736800cf28d6dec9e39a7/Algorithmic-Differentiation-of-Linear-Algebra-Functions-with-Application-in-Optimum-Experimental-Design-Extended-Version.pdf) [Optimum Experimental Design, S. Walther and L. Lehmann](https://www.researchgate.net/profile/Sebastian-Walter-6/publication/45894522_Algorithmic_Differentiation_of_Linear_Algebra_Functions_with_Application_in_Optimum_Experimental_Design_Extended_Version/links/54f736800cf28d6dec9e39a7/Algorithmic-Differentiation-of-Linear-Algebra-Functions-with-Application-in-Optimum-Experimental-Design-Extended-Version.pdf)
- [An extended collection of matrix derivative results for forward and reverse mode](https://people.maths.ox.ac.uk/gilesm/files/NA-08-01.pdf) [algorithmic differentiation, Mike Giles](https://people.maths.ox.ac.uk/gilesm/files/NA-08-01.pdf)
- [Auto-Differentiating Linear Algebra, Seeger et al.](https://arxiv.org/pdf/1710.08717)
- [Fast Differentiable Sorting and Ranking, Blondel et al.](https://proceedings.mlr.press/v119/blondel20a/blondel20a.pdf) [Gini-regularized Optimal](https://arxiv.org/pdf/1712.02512) [Transport with an Application to Spatio-Temporal Forecasting, Roberts et al.](https://arxiv.org/pdf/1712.02512) [Neurips 2017](https://arxiv.org/pdf/1712.02512) [Smart Vision-Language Reasoners, Roberts and Roberts ICML 2024](https://arxiv.org/abs/2407.04212)

A non-exhaustive list.

- Parallelization
- Special matrix structures
- Partitioning technique for other matrix factorizations
- Extend to rank revealing QR via propagating *an approximate* gradient through the (learned) permutation, P_{π} to determine $\bar{P_{\pi}}$.

Other things you to speak to me about during coffee breaks

- NLP and IR
- Multimodal LLMs
- Math AI: Smarter VI Ms
	- Using images and fine tuning (ICML 2024)
	- VLMs-(submitted Neurips 2024)
	- Scaling laws/data paucity
- AI generated content detection (WIP)

Thank you!