
QR and LQ
Decomposition
Matrix
Backpropagation
Algorithms for
Square, Wide, and
Deep - Real or
Complex - Matrices
and Their Software
Implementation
8th International Conference on

Algorithmic Differentiation,

CHICAGO, ILLINOIS

Lucas Roberts & Denisa Olteanu Roberts

September 17, 2024

mailto:rlucas7@vt.edu

Algorithmic Differentation
Placeholder

• Matrix Background

• Algorithmic Differentiation Background

• Paper Contributions

• Future Ideas

2 / 33

Matrix Background

An {over,re}view of some Matrix
Analysis material.

Matrix Concepts I.
Placeholder

• Linear Independence (LIN) (x0, ..., xn−1): are said to be LIN iff
∑n−1

i=0 aixi = 0 with
not all ai = 0.

• Rank of a matrix: The largest number columns that constitute a LIN set of columns
of the matrix.

• Partitioning: A matrix may be partitioned into sub-matrices A = [X|Y]. Here the
#{rows of X}+ #{rows of Y} = #{rows of A} andmutatis mutandis for columns.

4 / 33

Matrix Concepts II.
Placeholder

• Householder Reflection: Let v ∈ Rn be a non-zero vector. A Householder vector of
v is of the form P = I− 2 vvT

vTv .

• Householder Matrix: Q =
∏n−1

i=0 Qi, a product of n distinct Householder vectors.
• QR Factorization: An×m = Qn×mRm×m where n ≥ m.

5 / 33

Some Intuition
Placeholder

• Given a vector x we want to find a reflection that
transforms x into a direction parallel to some unit
vector y.

• To achieve this we do u = x− ||x||y and v = u/||u||.
• Then calculate I− 2vvT = ||x||y.
• Now by choosing y = e1, the Euclidean basis vector with
first element 1, we recurse on corresponding vectors to
arrive at an upper diagonal matrix R.

• Q is the product of the Householder reflection matrices
and A = QR.

6 / 33

Intuition (cont)
Placeholder

• Start with the first
column of A and zero
out all entries
beneath the main
diagonal entry.

• Then recurse onto
the (n− 1)× (m− 1)
sub-matrix. Repeat
until empty matrix.

• This gives you
QTA = R.

7 / 33

Useful QR Facts
Placeholder

• A = QR.
• QQT = In×n and QTQ = Im×m.

• span(A) = span(Q).

Span is the collection of all vectors which
can be represented as linear combinations
of the basis from the vector space.

8 / 33

Algorithmic Differentiation
Background

An {over,re}view of some Algo-
rithmic Differentiation material.

Brief Algorithmic Differentiation Intro I
Placeholder

• Reverse mode will be the primary focus of the talk.

• In algo-diff, represent a function as a Directed Acyclic Graph (DAG).

• Then topologically sort the graph-if necessary.

• Then generate intermediate node values on the forward pass.

• In the reverse pass generate the gradient values.

10 / 33

Brief Algorithmic Differentiation Intro II
Placeholder

• In many examples, the node values are expressed as scalars. However, the same
approach applies if the node values are matrices.

• As we’ll see, the equations become more difficult to derive. However, the closed
form solutions enable speedups.

• A motivating idea for matrix algorithmic differentiation is to use the BLAS routines
directly when possible, see Seeger et al. also Giles paper.

11 / 33

Brief Algorithmic Differentiation Example
Placeholder

12 / 33

Paper Contributions

E.g. What is new and worth not-
ing and citing.

Equations Non-wide Case
Placeholder

• For A ∈ Rr×c let A = QR then,
Ā = (Q̄+ Qcopyltu(M))R−T with M = RR̄T − Q̄TQ, (eqn 3.3)

• Ā = Q
[
R̄+ PL ◦

(
RR̄T − R̄RT + QTQ̄− Q̄TQ

)
R−T]+ (

Q̄− QQTQ̄
)
R−T (eqn 3.8)

(prior work from S. Walther)
PL is a strictly lower tridiagonal matrix with all ones beneath the diagonal and
zeroes along and above the main diagonal

• We will refer to these two equations throughout the remainder of the talk and
argue that they are equivalent-or can be made so-and that (3.3) is preferred to
(3.8).

14 / 33

Equations Wide Case
Placeholder

• Let Q̄p = Q̄+ YV̄T .

• For A ∈ Rr×c let A = QR then A = [X|Y] = QR = Q[U|V].
• Ā = [(Q̄p + Qcopyltu(M))U−T|Ȳ], (eqn 3.3).

• Ā = [Q
(
Q̄p + PL ◦

(
UŪT − ŪUT + QTQ̄p − Q̄T

pQ
)
U−T]+ (

Q̄p − QQTQ̄p
)
U−T|Ȳ].

• In both equations Ȳ = QV̄.
• If X is not full rank use an rank revealing QR and permute the columns to get the
columns first, APπ = QR. For Pπ the permutation matrix.

• *Define the matrix product of Y or Ȳ to generate a 0 when Y,V are empty then
these equations give the non-wide equations as a special case.

15 / 33

Paper Contributions
Placeholder

• Proof of Equivalence of Eqn 3.3 vs Eqn 3.8. for R and C fields.

• Full proofs of QR derivative formulae from first principles for wide case
(rows < columns), for both R and C.

• Correction term for C field when using Eqn 3.8.

• Implementations in wide case for major open source deep learning frameworks
(PyTorch & Tensorflow), for both R and C.

• Also tall/deep case of LQ decomposition, analogous to transpose, of QR.

For completeness, also include derivations of gradients for the tall/deep and the
square QR cases for R.

16 / 33

Ideas Driving The Proofs
Placeholder

• C = f(A,B) where f is some function with matrix argument(s), for us f is a QR
factorization.

• Express loss: dL = tr(C̄TdC) = tr(C̄T ∂f
∂AdA) + tr(C̄T ∂f

∂BdB).

• Then, identify Ā = ∂f
∂A

T
C̄ and B̄ = ∂f

∂B
T
C̄, as the variations/gradients sought.

• (Wide case) Partition the input matrix A = [X|Y] with X square and Y tall/deep.

• Assume X is full column rank, then Y can be expressed as a linear combination of
X.

• Analogous partition of R as R = [U|V].

17 / 33

QR Algo-diff Data Flow Square/Deep-Tall
Placeholder

18 / 33

QR Algo-diff Data Flow Wide Case
Placeholder

19 / 33

Key Point-A New Matrix
Placeholder

• We define a new gradient matrix Q̄p, denoted Q̄prime in our paper.

• In deep/square cases this corresponds to the original Q̄ (e.g. a special case).

• Allows use of Equation (3.8) if desired for wide Amatrices by replacing all
instances of Q̄ with Q̄p in gradient.

• However, we prefer equation 3.3.

20 / 33

Simulated Matrices Setup-Varying Matrix Defect
Placeholder

• We call the matrix defect the value by which we multiply rows to get columns.

• For example, with a defect of 2, we have 4 rows, 8 columns.

• A square matrix has defect 1.

• All matrix entries are Gaussian mean 0, variance 1.

21 / 33

Equation 3.3 vs 3.8 Runtimes
Placeholder

22 / 33

Equation Runtimes-Larger Defects
Placeholder

23 / 33

Equation 3.3 vs 3.8 Matrix Market Examples
Placeholder

• The simulated values indicate some form of expected behavior. What if naturally
occuring matrices are not what we expect?

• Let’s look at a few matrix market examples-Harwell Boeing economic matrices.

• In all 3 cases the use of equation 3.3 has a better runtime.

24 / 33

Matrix Market Examples-All Times In (ns)
Placeholder

From The Harwell-Boeing Economic Models
Matrix Eqn 3.3 Eqn 3.8 rows columns
Wm1 4553340 11666639 207 277
Wm2 3677850 8686058 207 260
Wm3 3465780 7900550 207 260

25 / 33

https://math.nist.gov/pub/MatrixMarket2/Harwell-Boeing/econiea/

Equation 3.3 vs 3.8 Runtimes
Placeholder

• Prefer Equation 3.3, why? The evidence:

• The TLDR (too long, didn’t read) here is that using equation 3.3 is faster on average
than equation 3.8.

• For larger defects, the difference decreases. This is because the proportion of the
total computation being done is by the calculation required for the additional
(columns− rows) columns, e.g. the wide/defect part. Even here Equation 3.3 is
modestly faster.

• Using Equation 3.3 obviates using a special branch for C fields, simpler code and
easier to maintain and also faster.

26 / 33

Why C Is Different?
Placeholder

• The reason falls out naturally from the proof in the wide case.

• For the proof to work for C we need PL ◦
(
M− M†)+ M† to equal symh(M ◦ E)

where E is a matrix of 1s along the main diagonal, 0s above and 2s beneath. For
complex, wide matrices these two are not equal.

• We derive a correction term to make them equal, C = iℑ(diag(M)), where
i =

√
−1.

• Use the correction term if you want to use Equation 3.8 with complex valued
matrices.

27 / 33

Some Future Research
Areas

Get in touch if interested

Immediate Next Steps: JAX?
Placeholder

• I plan to implement the wide case in JAX if the maintainers will accept a PR. I’ve
initiated discussion on a github issue. If you are someone who maintains or
contributes to JAX-or who knows the codebase well-please let’s talk during the
conference.

• Julia? I’m not a Julia developer. If a Julia developer wants to contribute this-and
they do not already support I’m happy to work with you to help ensure the code is
correctly implemented.

29 / 33

References Cited
Placeholder

• Algorithmic Differentiation of Linear Algebra Functions with Application in
Optimum Experimental Design, S. Walther and L. Lehmann

• An extended collection of matrix derivative results for forward and reverse mode
algorithmic differentiation, Mike Giles

• Auto-Differentiating Linear Algebra, Seeger et al.

• Fast Differentiable Sorting and Ranking, Blondel et al. Gini-regularized Optimal
Transport with an Application to Spatio-Temporal Forecasting, Roberts et al.
Neurips 2017 Smart Vision-Language Reasoners, Roberts and Roberts ICML 2024

30 / 33

https://www.researchgate.net/profile/Sebastian-Walter-6/publication/45894522_Algorithmic_Differentiation_of_Linear_Algebra_Functions_with_Application_in_Optimum_Experimental_Design_Extended_Version/links/54f736800cf28d6dec9e39a7/Algorithmic-Differentiation-of-Linear-Algebra-Functions-with-Application-in-Optimum-Experimental-Design-Extended-Version.pdf
https://www.researchgate.net/profile/Sebastian-Walter-6/publication/45894522_Algorithmic_Differentiation_of_Linear_Algebra_Functions_with_Application_in_Optimum_Experimental_Design_Extended_Version/links/54f736800cf28d6dec9e39a7/Algorithmic-Differentiation-of-Linear-Algebra-Functions-with-Application-in-Optimum-Experimental-Design-Extended-Version.pdf
https://people.maths.ox.ac.uk/gilesm/files/NA-08-01.pdf
https://people.maths.ox.ac.uk/gilesm/files/NA-08-01.pdf
https://arxiv.org/pdf/1710.08717
https://proceedings.mlr.press/v119/blondel20a/blondel20a.pdf
https://arxiv.org/pdf/1712.02512
https://arxiv.org/pdf/1712.02512
https://arxiv.org/pdf/1712.02512
https://arxiv.org/abs/2407.04212

Some (Natural) Extensions
Placeholder

A non-exhaustive list.

• Parallelization

• Special matrix structures

• Partitioning technique for other matrix factorizations

• Extend to rank revealing QR via propagating an approximate gradient through the
(learned) permutation, Pπ to determine P̄π .

31 / 33

Other Research Areas Of Interest
Placeholder

Other things you to speak to me about during coffee breaks

• NLP and IR

• Multimodal LLMs
• Math AI: Smarter VLMs

— Using images and fine tuning (ICML 2024)
— VLMs-(submitted Neurips 2024)
— Scaling laws/data paucity

• AI generated content detection (WIP)

32 / 33

Thank you!

